
Flag Factory Demo

Ian Taylor
ian@chilliant.com
Introduction

What is it?

The Flag Factory (FF) demo is a bootstrapping website that demonstrates various compression techniques.

Features

Amongst other features:

1. The demo is compiled as both a small MS-DOS 16-bit COM executable (“FF.com“) and an ever smaller 32-bit Windows console executable (“FF.exe”);

2. Neither executable writes to anything other than standard output nor reads anything other than its own command-line;

3. Both executables create a web page (“FF.html”) that displays 232 distinct flags in scalable vector graphics (SVG) format;

4. The flags can be enlarged by clicking on them; and

5. The web page is “HTML 5”-compliant whilst the flags themselves are “SVG 1.1 Tiny”-compliant, as verified by http://validator.w3.org.

Manifest

You probably extracted this document from a zip archive (“FF.zip”) that also contains the two demo executables (“FF.com” and “FF.exe”) and the complete source code.

FF.com

Execution

The MS-DOS 16-bit COM version of the demo requires MS-DOS, a 32-bit flavour of Windows or a 16-bit emulator (such as “dosbox“) to run.

Under 32-bit Windows:

1. Create an empty directory;

2. Copy “FF.com” into it; then

3. Type “FF|cmd” (“FF” piped to “cmd”).

After some time, the web page should be displayed in your registered HTML presenter.

Technology

The 16-bit version of the demo is built with a number of technologies.

The C compiler used is Digital Mars (http://www.digitalmars.com), although Open Watcom (http://www.openwatcom.org) was also investigated. The 16-bit code is linked with a minimal C runtime library (CRT) and a COM entry point (“FF.asm”) assembled using NASM (http://www.nasm.us). This produces a COM file of 20083 bytes, of which 4960 bytes is machine code.

This file is further compressed using the Ultimate Packer for eXecutables (UPX from http://upx.sourceforge.net) down to 16383 bytes. This is one byte less than the self-imposed target of sixteen kilobytes.

Internals

The 16-bit demo reads from the command line by accessing data via the COM header, also known as the Program Segment Prefix (PSP). See “FF.com”.

Data is written to standard output using the DOS “int 21h” service “ah = 2”. See “putch()“ in “FFcrt.c”. No other operating system interaction is required.

To overcome the input/output limitations, and to remove the overhead of explicit file handling code, the web page is bootstrapped as follows:

1. With no command line arguments, the executable emits a single line of shell script that will re-launch “FF.com” to create a batch file (“FF.bat”) via redirection and run it. This line of script is executed by piping the output to a command interpreter (e.g. “cmd.exe”);

2. The batch file (“FF.bat”) contains a series of shell commands to create the web page (“FF.html”) and all the flag images (“*.svg”), again, by re-launching the executable with redirection; then

3. The final line of the batch file launches the web page using “start FF.html”.

FF.exe

Execution

The 32-bit Windows console version of the demo requires a 32- or 64-bit flavour of Windows to run.

Under 32-bit Windows:

1. Create an empty directory;

2. Copy “FF.exe” into it; then

3. Type “FF|cmd” (“FF” piped to “cmd”).

After some time, the web page should be displayed in your registered HTML presenter.

Technology

The 32-bit version of the demo is built with a number of technologies.

The C compiler used is Microsoft Visual C/C++ with selected optimisations. This produces an EXE file of 24576 bytes, of which 5250 bytes is machine code.

This file is further compressed by replacing the default Microsoft linker with Crinkler (http://www.crinkler.net). This brings the final executable down to 14438 bytes.

Internals

The 32-bit demo reads from the command line and writes to standard output using operating system functions from just “kernel32.dll”:

· GetCommandLineA()

· GetStdHandle()

· LoadLibraryA()

· WriteFile()

No other operating system interaction is required.

The 32-bit demo bootstraps the web page in the same manner as the 16-bit version (see above).
Commentary

Legacy Platform

Ironically, the 16-bit version of this demo is the only MS-DOS COM program I’ve ever written, just as 64-bit Windows makes it redundant. It’s hopefully also my last. Piecing together a development environment with the compiler, assembler and system tools capable of constructing it was not easy. Thankfully the vast majority of the work was done on a 32-bit Windows 7 netbook, so I didn’t have to resort to 16-bit emulation under 64-bit Windows.

The 16-bit Digital Mars compiler did not seem particular aggressive with optimisations when compared to the more recent 32-bit one. Perhaps more hand-coding would squeeze a few more byte out of the uncompressed code, but it’s free of most cruft found in small executables (excessive start-up code, large C runtime libraries, unused features, etc.) and the downstream compression would probably “soak up” the savings.
Compression

If you concatenate the 233 HTML and SVG files produced by the demo executables and ZIP the resulting file, it compresses down to just over fifty kilobytes. This is appreciably more than the size of “FF.com” or “FF.exe” which also include the code to perform the decompression.

However, the biggest surprise was the fact that “FF.com” is bigger than “FF.exe”. The 16-bit machine code and 32-bit machine code are comparable in size (4960 bytes versus 5250 bytes), but Crinkler obviously does a much better job than UPX at constructing small executables.

As a test, I ran the uncompressed 32-bit executable (24576 bytes) through UPX and came up with a compressed image of 19968 bytes. This is 38% larger than the Crinkler output. Of course, Crinkler is a very different beast, being able to use object file metadata to aid compression; but it’s still very impressive compared to UPX’s post-link scheme.
As a further comparison, I zipped the raw 32-bit executable and came up with 17824 bytes.
Interestingly, concatenating and zipping the 155 kilobytes or so of ASCII source produces an archive of 34955 bytes. Zipping just the data files (“FFdata.dat” and “FFiso.dat”) takes up 24988 bytes, so the compile-time bit-packing in “FFdata.c” was worthwhile, after all.
FF.doc, Copyright © Ian Taylor 2011
Page 
 of 


